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Propagation of nonlinear pulses in chirped fiber gratings

E. N. Tsoy* and C. M. de Sterke
School of Physics, The University of Sydney, New South Wales 2006, Australia

~Received 7 December 1999!

The propagation of nonlinear optical pulses in chirped fiber gratings is studied. The dynamics is analyzed on
the basis of the inhomogeneous nonlinear Schro¨dinger equation. By using perturbation theory we demonstrate
that the inhomogeneity affects the amplitude and the width, as well as the phase and the velocity of the soliton.
The dynamics of a multisoliton pulse~breather! in chirped gratings is also discussed. It is shown that the
velocity variation of individual solitons leads to the breaking of a bound multisoliton state. This process
manifests itself as the pulse splitting that is experimentally observed by other authors. Numerical simulations
of the pulse dynamics agree well with analytical results for wide range of parameters.

PACS number~s!: 42.79.Dj, 42.81.Dp
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I. INTRODUCTION

There is an increasing theoretical and experimental in
est in pulse propagation in Bragg gratings@1#. The large
group velocity dispersion, the selective frequency respo
and the nonlinear properties of gratings allow applicatio
such as in-fiber filters, dispersion compensation devices@2#,
pulse compressors@3#, and sensors@4#.

In fiber Bragg gratings, in which the refractive index
the fiber core varies~almost! periodically as a function of
position, the forward and backward propagating waves
strongly coupled. This leads to the opening of a photo
band gap in the optical spectrum, and low group velocity a
strong dispersion for frequencies just outside this gap.
high-intensity dynamics of the forward and backward pro
gating waves is described by the nonlinear coupled m
equations~NLCMEs!. However, a convenient and adequa
description can also be given using the nonlinear Sch¨-
dinger~NLS! equation@5#. Both these equations have solito
solutions that can propagate at velocities well below
speed of light in the uniform medium. Indeed, the existen
of such ‘‘grating solitons’’ was verified experimentally b
Eggletonet al. @5,6#, Taverneret al. @7#, and Millaret al. @8#.

Nonuniform gratings, which are characterized by var
tions of the local Bragg frequency~chirped gratings! or
variations in the grating strength, have additional degree
freedom for the control of pulse propagation. The pres
work is motivated by the experiments of Slusheret al. @9#,
who studied high-intensity propagation in linearly chirp
gratings. They found that incident pulses with a peak int
sity exceeding roughly 10 GW/cm2 that are reflected by
such a grating split into a pair of pulses under very gene
conditions. An example of such a dynamics is given
Fig. 1.

We analyze pulse propagation in nonuniform gratings,
cluding the pulse splitting, using the reduction of t
NLCMEs to the NLS equation~Sec. II A! @10,11#. Applying
perturbation theory we first study the dynamics of sin
solitons, and show that the inhomogeneity affects the sol
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amplitude and width, as well as its velocity and frequen
~Sec. II B!. As a consequence of this, we find that highe
order solitons propagating in nonuniform gratings split~Sec.
II C!. In Sec. III this insight is used to explain the results
Slusheret al. @9#: an incident pulse that is sufficiently intens
splits into its soliton components. For most two-solito
pulses, the peak intensities of the emerging solitons differ
an order of magnitude, so that, in effect, a single pulse
observed experimentally. Only three-soliton pulses, and
soliton pulses close to the three-soliton threshold, lead
soliton components with roughly similar intensity ratio
which can thus be observed separately. This is confirmed
numerical simulations, which show that the threshold
splitting approximately corresponds to that for three-solit
formation. The dynamics of a two-soliton pulse of the pe
turbed NLS equation is analyzed numerically in the Appe
dix by using the inverse scattering transform~IST! method.

II. THEORY

The refractive index of a nonuniform grating is written

n~z!5n̄1dn~z!1Dn~z!cosS 2pz

d
1u~z! D , ~1!

wheren̄ is the average refractive index,dn is the variation in
the background refractive index,Dn is the modulation depth
of the grating,d is the nominal grating period, andu is its
phase. Assumingdn,Dn small (!n̄) and all slowly varying,
the envelope functionsE6 of the electric field are known to
obey the NLCMEs@10#

y
n.

FIG. 1. The evolution of the total intensity inside the chirp
grating,L50.06 m,s51700 m21, I inc520 GW/cm2.
2882 ©2000 The American Physical Society
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i

V

]E6

]t
6 i

]E6

]z
1d~z!E61k~z!E71G~ uE 6u212uE7u2!E6

50, ~2!

where the subscript corresponds to forward (1) and back-
ward (2) propagating waves,V is the group velocity in the
grating’s absence,G54pn̄n2 /(lBZ), n2 is the nonlinear re-
fractive index,lB52n̄d is the Bragg wavelength, andZ is
the vacuum impedance. The grating strengthk(z) and the
variation of the local Bragg frequencyd(z) are given by

k~z!5
p

lB
Dn~z!, d~z!5

2p

lB
dn~z!2

1

2

du

dz
. ~3!

The dispersion relation„E6;exp@i(Qz2Vt)#… of uniform
linear gratings has two branches, and is given by

V65V~2d6Ak21Q2!. ~4!

The dimensionless group velocityv is

v[
1

V

dV6

dQ
56

Q

AQ21k2
. ~5!

In nonuniform gratings that are sufficiently slowly varyin
Q, andv can be considered as local parameters.

A. Nonlinear Schrödinger equation

Though the NLCMEs~2! govern wave propagation in
gratings, perturbation theory is not well developed for the
equations. We therefore use the reduction of the NLCME
the NLS equation, which is very well studied. Consider t
eigenfunctions~Bloch functions! corresponding to the dis
persion relation~4!,

f u5
1

A2
S A11v

2A12v
D , f l5

1

A2
S A12v

A11v
D , ~6!

where f u ( f l) refers to the upper~lower! branch of the dis-
persion relation. Note that Eqs.~4! and ~5! only specifyuvu,
and not its sign. Therefore, for forward propagating~incom-
ing! pulses we takev.0, whereas for backward propagatin
~reflected! pulses we takev,0. We now write a multiscale
expansion of the envelopes as@1#

S E1

E2
D 5Fna~zj ,t j ! f u~zj !1n2b1~zj ,t j ! f l~zj !

1n3b2~zj ,t j ! f l~zj !expF i S E
0

z

Q~z!dz2V1t D G ,
~7!

where zj5n j z, t j5n j t, j 51,2,. . . , and n!1 is a small
parameter. Slow variations of the Bloch functions via thezj
have to be included in this expression to account for
grating nonuniformity@10,11#. Substituting Eq.~7! into Eq.
~2! and applying multiple scale analysis, one obtains in or
n3 the perturbed NLS equation for the complex amplitude
the Bloch functiona(z,t) @10,11#
e
to

e

r
f

iv
]a

]z
1

i

V

]a

]t
1

1

2kg3v2V2

]2a

]t2
1

G~32v2!

2
uau2a

52
i

2
v8a2

1

2kgvV S k8

kg2
1

~21v2!v8

v D ]a

]t

2
1

4kv
S v8k8

kg
1

g~322v2!v82

2v
2

v9

g
D a, ~8!

wherev(z)V is the local group velocity,g51/A12v2, and
the prime means the space derivatived/dz. Equation~8! de-
scribes pulse propagation for frequenciesoutside the band
gap at any grating position; for incoming pulsesv.0, for
reflected pulsesv,0. The equation is valid for any type o
nonuniformity. The propagation of pulses in chirped gratin
(k5const) or in gratings with variable strength (d5const)
can be obtained as particular cases. The relations betweev,
d, andk and their variations are@10#

v5A12
k2

~V1 /V1d!2
,

~9!
dv
dz

5
1

kg3v

dd

dz
2

1

kg2v

dk

dz
.

Though our formalism is completely general, let us co
sider here the type of gratings of direct interest. Shown
Fig. 2 is the band diagram of an apodized, chirped grat
with the total chirpdc . The frequencies at which the fiel
envelopes are evanescent, and where the grating thus refl
are indicated by the dashed lines. The apodized regions a
front and the back reduce out-of-band reflections. The g
ing’s central section is chirped but has a uniform streng
this section is the main focus of this work.

Now we find the relation between the incident pulse a
the initial condition at the start of the central sectiona(0,t).
These differ because of the taper@5#. We assume the spec
trum of the incident pulse to be outside the band gap, so
essentially all incoming energy transforms to the forwa
propagating pulse in the grating and reflections are ne
gible. Let the envelope of the incident pulse atz50 have the
form

FIG. 2. The band diagram of apodized chirped (a,0) gratings
as a function of the detunings5(v2vB)/V and the distancez.
Numbers near the left axis correspond to the set of parameters,
in numerical simulations. In the work of Slusheret al. @9# k
51260 m-1, L56 cm.
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Einc~ t !5E0 sech~ t/t0! exp~2 isVt!, ~10!

wheret0 is the pulse duration,v is the carrier frequency,vB
is the Bragg frequency atz50, and s5(v2vB)/V
5V1 /V is the detuning. We suppose that in the tapers
pulse transformsadiabatically, affecting only its amplitude.
Then from the linearized Eq.~8!, and using leading terms
we find @11#

a~z'0,t !5
E0

Av~0!
sech~ t/t0!. ~11!

The same relation can be obtained from the conservation
dJ/dz50, whereJ[*2`

` (uE1u22uE2u2) dt. Thus, the total
field intensity inside the grating is larger than that outside
a factor 1/v(0). Though numerical simulations show th
there is also a variation of the pulse phase during propa
tion through the taper, relation~11! is a good approximation
for a large set of system parameters.

We now analyze the pulse dynamics using Eq.~8!. First
note that the peak intensity of the incident pulse~10!, corre-
sponding to the fundamental soliton in auniform grating is
@5#

I f5
3.107

V2

lB

pkn2w2vg3~32v2!
, ~12!

wherew is the full width at half maximum~FWHM!, related
to t0 from Eq.~11! asw52t0 cosh21(A2). The thresholdI N
for the creation ofN solitons from the pulse with initia
shape~10! is related toI f by @12# I N5(N21/2)2I f . The
intensity I f depends on the detuning throughv, so we use it
for estimates of thresholds for nonuniform gratings as we

Below we drop the last term on the right-hand side of E
~8! because the coefficient in brackets is small for typi
values of the parameters. Moreover, the last term can
eliminated by a phase transformation of the fielda(z,t).

Since the grating nonuniformity leads to the position d
pendence of the dispersion and nonlinearity, it is conven
to introduce new dimensionless variables

y5E
0

zdz

zs
, t5

1

t0
S t2

1

VE0

zdz

v D , c5
a

as
, ~13!

where

zs~z!5t0
2V2kg3v3,

~14!
as~z!5A2/@vVt0Ag3kG~32v2!#.

Herezs is the scale of the propagation distance, which equ
the dispersion length, andas is the amplitude scale of th
field c @as(0) is the amplitude of thefundamentalsoliton,
cf. Eq. ~12!#. With increasingv, as decreases, whilezs in-
creases. Then Eq.~8! can be written in its final form

icy1
1

2
ctt1ucu2c52 i e0c2e1ct , ~15!

where
e

w

y

a-

.
.
l
e

-
nt

ls

e05
vy

2v
1

as,y

as
,

~16!

e15
1

2gv2Vkt0
S ky

kg2
1

~21v2!vy

v D .

We should mention that equations similar to Eq.~15! have
been studied in the context of soliton propagation in opti
fibers @13#, e.g., in fibers with losses and in dispersio
decreasing fibers.

B. Dynamics of a single soliton

Here we consider the effect of the perturbation termse0
ande1, due to the grating’s inhomogeneity, on the dynam
of the single soliton

c~y,t!5A~y! sech~x! exp~ iw!, ~17!

where

x5@t2tc#/tp , w5f1c1tpx1c2tp
2x2.

Heretc , tp , f, c1, andc2 are functions ofy. The values
2V11c1 /t0 and c2 /t0

2 are the linear phase and the chi
coefficients of the pulse envelope, respectively. Below
deal only with slow inhomogeneities, so that the perturb
tions in Eq. ~15! are small. Therefore, we assume that t
inhomogeneity only results in a variation of soliton para
eters without changing the shape. To obtain the equations
the parameter evolution we use the perturbation method
Maimistov @14#, according to which

d

dy
~tpA2!522S e1c11

vy

2v
1

as,y

as
D tpA2, ~18!

dtc

dy
5c12

p2

3
e1c2tp

2 , ~19!

dc1

dy
52

2e1

3tp
2 ~11p2c2

2tp
4!, ~20!

dc2

dy
52S 1

p2tp
4

2c2
22

A2

p2tp
2D , ~21!

dtp

dy
52c2tp . ~22!

According to Eqs.~18!–~22!, the inhomogeneity affects th
soliton centertc and the frequency shiftc1. We use this in
discussing the splitting of a bound state of soliton~see Sec.
II C!. By the definition ofc(y,t), the initial linear phase
coefficient c1(0)50 @see Eqs.~11! and ~13!#. Hence for
small distancesy!1/e1, the coefficientc1(y);O(e1), and
the first term on the right-hand side of Eq.~18! can be
dropped asO(e1

2). Then Eq.~18! can be immediately inte-
grated, giving
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tp A2

tp0A0
2

5
as0

2 v0

as
2 v

, ~23!

where subscript ‘‘0’’ denotes the initial value of correspon
ing parameter, i.e., aty50. The producttpA2 is a measure
of the total pulse power. Therefore Eq.~23! represents varia
tions of the pulse power due to the inhomogeneity. In dim
sional units Eq.~23! has the form

tpam
2 5

t0E 0
2

v
, ~24!

wheretp is the local pulse width, andam is the maximum of
the absolute value of the Bloch function envelopeua(z,t)u
@see Eq.~7!#. Note that an inhomogeneity withvz,0 (vz
.0) in the actual system has the same effect as a vari
dissipation ~amplification! in the dimensionless system
Since bothzs andas @Eq. ~14!# also change due to the inho
mogeneity, variations of the actual envelopea(z,t) cannot
be easily predicted. There is of course no energy loss or
due to the inhomogeneity, and the quantityJ ~see Sec. II A!
does not vary with position.

Combining Eqs.~21! and~22! and taking into account Eq
~23!, we obtain the equation for the pulse duration

d2tp

dy2
5

4

p2 F 1

tp
3

2A0
2

as0
2 v0

as
2v

1

tp
2G , ~25!

with the following initial conditions:

tp~0!51, dtp~0!/dy52c2~0!. ~26!

The remaining parameters of the soliton are determined f
tp(y). Equation~25! is a Kepler equation with varying co
efficient. A similar equation was studied by Anderson@15# in
the context of optical soliton propagation in media withcon-
stant dissipation, while in our case the perturbation coe
cients vary ony. We give here only the main conclusion
from the analysis of Eq.~25!, which is similar to that of
Anderson@15#. First of all, depending on the sign of th
HamiltonianH of Eq. ~25!, which is defined as

H5
1

2 S dtp

dy D 2

1F 2

p2tp
2

24A0
2

as0
2 v0

as
2 v

1

p2tp
G , ~27!

the pulse width either oscillates (H,0) about tmin

5as
2 v/@A0

2as0
2 v0#, the minimum of the effective Kepler po

tential, or asymptotically grows (H.0). One finds that both
H and tmin increase whenv decreases and vice versa.
means that due to inhomogeneity the regime of the wi
dynamics changes with the propagation. The period of
width oscillations, corresponding to the period of motion
the elliptic orbit of Kepler potential@16#, depends on the
position inside the grating as

Zp~y!5
4

p

as0
2 v0

as
2v2

A0
2

A2uHu3
. ~28!

For c2(0)50, the initial period ofsmall oscillationsZs is
calculated asZp(0) with the additional conditionA051 ~the
-

-

le

in

m

-

h
e

initial pulse is close to the fundamental soliton!, so thatZs
5p2 in units of the dispersion length. We note that the tre
ment given here does not include radiation losses, wh
cause the oscillations aroundtmin to be damped. As an aside
we also mention that if the inhomogeneity is periodic w
the period close toZp , then resonance and chaotic pheno
ena can occur, leading to pulse broadening and even p
breaking@17#.

The previous arguments are sufficient for a qualitat
description of the pulse behavior during the propagation
side the inhomogeneous grating. Moreover, the solution
Eq. ~25! can easily be found numerically. However, here w
consider limiting cases to obtain some explicit relation
Though the relations above are valid both ford5d(z) and
k5k(z), below we concentrate on chirped gratings, keep
k5const. We introduce, in addition toZp , two characteristic
dimensionless lengths—the length of the systemZL and the
chirp lengthZc

ZL~L !5
1

kV2t0
2E0

L

~gv !23dz,

~29!

Zc~y!5U v~32v2!

3g2~11v2!

dy

dvU .
The length scaleZc is defined as the scale of the varyin
coefficient, which is the inverse local asymptotic wid
1/tmin in Eq. ~25!.

The first limiting case is that of short gratingsZL!Zp ,
where the variations of the pulse width is small. Then E
~25! can be approximated as

d2tp

dy2
5

4

p2 F12A0
2
as0

2 v0

as
2v

G , ~30!

so that the pulse width is completely determined by the
homogeneity. For short gratings, if the amplitude of the
cident pulse is greater~less! than the amplitude of the fun
damental soliton, A0.1 (A0,1), then tp decreases
~increases! for any weak inhomogeneity.

The next limiting case is that of adiabatic dynamics,Zc
@Zp , when the Kepler potential changes slowly compar
with the oscillation period. By applying the WKB metho
~see also the work by Anderson@15#! we find

tp5tminF11b cosS 2

pE0

y

tmin
22 dy1q0D G , ~31!

where constantsb andq0 are determined from the set

A0
2215b cosq0 ,

~32!

2c202A0
2 dtmin~0!

dy
52

2

p
A0

2b sinq0 .

The second term in Eq.~31! is negligible, if the incident
pulse is close to a fundamental soliton, i.e.,A051.

Let us now apply these results tolinearly chirped gratings
d5az, wherea is a constant. The characteristic lengths th
have the following forms:
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Zc5
1

V2t0
2a

32v2

3vg2~11v2!
,

~33!

ZL5
1

V2t0
2a

S 1

v0
2

1

v~L ! D .

The adiabatic dynamics is described by@see Eq.~31!#

tp5tmin$11b cos@m„f ~v !2 f ~v0!…1q0#%, ~34!

where

m5
@as0

2 A0
2v0Vt0kG#2

8pa
,

f ~v !5
2v~927v2!

~12v2!2
19 ln

11v
12v

.

Therefore the soliton width, as well as other soliton para
eters, oscillates about the value corresponding to
asymptotic soliton. This value and the frequency of osci
tions changes slowly with the position.

Let us discuss the validity of Eqs.~18!–~22! and~25!. As
any perturbation theory the approach is correct when
variation of the parameters and/or their derivatives is sm
enough. Therefore the results apply to slow inhomogene
and sufficiently short gratings. Estimates show that for
chirp slopea;103 m22, the range of admitted velocitiesv
is 0.3&v&0.9, which corresponds to detunings betwe
1.05k and 2.3k. For smaller velocities the local wave num
ber is also small, so that the assumption of a slowly vary
envelope@see Eq.~7!# breaks down. For velocitiesv close to
unity the dispersion lengthzs becomes large, so that th
analysis is also not valid. The reduction of the system~18!–
~22! to the second-order ordinary differential equation~25! is
allowed for short systemsZL!1/e1. For larger systems on
should solve the whole set~18!–~22!, though the pulse be
havior is qualitatively similar.

C. Dynamics of multisoliton pulses

We are particularly interested in the application to mu
soliton pulses as observed in experiments of Slusheret al.
@9#. It is known that for the unperturbed NLS equation t
initial condition ~17! with w50 and arbitrary amplitudeA
produces the bound state ofN solitons ~pure imaginary ei-
genvalues z j ) with corresponding amplitudes@12# c0 j
52h j52(A2 j )11, wherej 51, . . . ,N andN is the largest
positive integer, satisfying 2(A2N)11.0. The threshold
for theN soliton creation isAN5N21/2. Suppose that due t
some perturbations the bound state splits into several, clo
spaced pulses. Since the intensity is proportional to
square of the amplitude, the ratio of peak intensities of
smallest and the largest solitons is;(2A22N11)2/(2A
21)2. For example, forA52, N52, the peak intensity of
the smaller soliton is only roughly 10% of that of the larg
soliton. Therefore, two-soliton solutions are observed a
single pulse up toA*2, while the three-soliton solution i
seen as a two-pulse state for almost all corresponding va
-
e
-

e
ll
s

e

n

g

ly
e
e

a

es

of A. Though it is possible that some perturbations cre
new solitons, the amplitudes of these solitons vanish, so
they are difficult to observe.

We saw from the analysis of the single soliton dynam
in Sec. II B, that the inhomogeneity leads to variations of
pulse position. In other words, the velocities of solitons
the bound state are not equal, resulting in pulse splitting.
dynamics of anN breather under perturbations is differe
from the dynamics ofN separate solitons due to the stron
mutual interaction. However, as shown in the Appendix,
dynamics of individual solitons in the two-soliton boun
state is qualitatively the same as the dynamics of the sin
soliton. The perturbations affect the larger soliton mo
strongly and after the splitting the solitons move in oppos
directions with respect to their ‘‘center of mass.’’ The im
portant point is that the small perturbations do not create n
solitons, even though their effects are similar to that of g
(e0,0).

Recall that we assumed that the effect of the taper can
captured by Eq.~11!. Numerical calculations in fact show
that just after the taper, the pulses are slightly chirped. T
initial chirp can result in increased thresholds for multiso
ton creation@18#.

III. COMPARISON WITH NUMERICAL SIMULATIONS
AND EXPERIMENTS

To verify the theory, we consider the linearly chirpe
grating (d5az,a,0) of length L56 cm and with band-
gap width 0.3 nm near the Bragg wavelengthlB
51053.2 nm. The total grating chirpDlc is chosen equal to
0.02, 0.05, and 0.1 nm, where the total variation of t
Bragg frequency dcV is related to Dlc as dcV

5u2pn̄Dlc/lB
2 uV. The pulse width ~FWHM! is 80 ps.

These parameters are close to those of Slusheret al. @9#.
Estimating the perturbations in Eq.~15!, we find that in the
cases considered,ue1u,ue0u and

e052
3

2
at0

2V2g2v
11v2

32v2
.

For a 6 cm grating, a total chirpDlc50.1 nm is not small,
e0;O(1). However, as shown below, even for this case
theory is qualitatively correct.

Chirped gratings have a selective response dependin
the detuning. Namely, fora,0, waves with the initial de-
tuning s @see Eq.~10!#, satisfying k,s,k1dc , are re-
flected, while waves with detunings.k1dc propagate al-
most without reflection~see also Fig. 2!. In fact, the
dynamics of pulses is more complicated, especially for
tunings close tok1dc , where part of the incident energy i
reflected and the rest is transmitted.

First we consider the propagation of one-soliton puls
and present results for the transmission, when the initial
tuning is outside the gap,s.k1dc ~see Fig. 2!. According
to Sec. II B, in the dimensionless system a pulse evolves
to the effective dissipation (e0.0) and the perturbatione1
that affects the phase. The dependence of the peak inte
and FWHM of the transmitted pulse on the detuning
shown in Fig. 3. Dots correspond to numerical calculatio
of NLCMEs ~2!, while lines are found using Eqs.~25!, ~26!,
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and ~23!. The peak intensity of the incident pulse is tak
I inc53 GW/cm2, corresponding to the weakly nonlinear r
gime, and below the threshold for the two-soliton creat
for all detunings considered. ForDlc50.02 nm and, for
example, the detunings51600 m-1, the dimensionless
lengths areZp(0)523.1, ZL51.99, Zc(0)52.67, and the
coefficients of the perturbations aree050.187 ande15
20.031. The condition of the short length is satisfiedZL
!1/e1, so that the analysis based on Eq.~25! is valid. For
large values of the chirp slope, there is appreciable devia
from the theory in the regions'k1dc , wherev is small
and the perturbations in Eq.~15! are large. However, in al
cases there is good qualitative agreement between the a
sis and numerical data.

Though the theory in Sec. II B is developed for pulses
transmission, it can also be used for an estimation of par
eters of the reflected pulse atz50. The dynamics of the
pulse can be divided into three stages:~i! the forward propa-
gation in the grating witha,0, ~ii ! the reflection, and~iii !
the backward propagation in the grating witha.0. By using
the theory, one can find the pulse parameters for forw
propagation up to some pointzi,zt , wherezt is the turning
point. The analysis is not valid for the second reflection st
because both the local detuning is close to the edge of
gap and the penetration of the pulse into the gap. Howeve
one knows the relation between pulse parameters atzi just
before and after the reflection, then one can apply the the
for the final stage of the dynamics as well. We assume

FIG. 3. Dependences of transmitted pulse parameters on
detuning. Dots show the results of numerical calculations
NLCMEs ~2!, lines correspond to the theory, Eqs.~25!, ~26!, and
~23!. ~a! FWHM, ~b! peak intensity. Squares correspond toDlc

50.02 nm, circles toDlc50.05 nm, and diamonds toDlc

50.1 nm.
n
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close to the turning point,zi'0.9zt , the pulse parameter
before and after the reflection are the same.

The result for parameters of the reflected pulses atz50
for I inc53 GW/cm2 is presented in Fig. 4. In order to var
the chirp slope, we keep the total chirp the same for all ca
(Dlc50.1 nm) and change the length of the systemL ~see
also Fig. 2!. Using the valuesL530 cm ands51700 m-1,
we find Zp(0)511.6, Zc(0)52.01, e050.249, ande15
20.028. The estimate of the turning point position in dime
sionless units, which plays the role ofZL , gives an infinity
because the theory does not work forv close to zero. How-
ever, the dimensionless length corresponding tozi is ;10.
Therefore, we use the Kepler equation~25! for both direc-
tions of the pulse propagation in order to compare with n
merical results. We choose different valueszi /zt for different
lengths; however, in all caseszi /zt'0.9 and this ratio is the
only fitting parameter in the analysis. We consider the int
mediate detunings in the region@k,k1dc# for the following
reasons. For detuningss'k it is possible to see two-peake
reflected pulses, even for very small initial intensities, i.e.,
the linear regime. For detuningss'k1dc there is a splitting
of the incident pulse into reflected and transmitted pul
near the turning point. Therefore only for the intermedia
region of detunings the forward and backward propagat
pulses can be considered as a single soliton. The deviatio
theoretical lines from results of the numerical calculation
Fig. 4 implies that the change of pulse parameters near
turning point cannot be completely neglected. However,

he
f

FIG. 4. Dependences of reflected pulse parameters on the d
ing. Dots show the results of numerical calculations of NLCM
~2!, lines correspond to the approximate treatment.~a! FWHM, ~b!
peak intensity. For all plotsDlc50.1 nm. Squares correspond
L50.06 cm, circles to L50.12 cm, and diamonds toL
50.30 cm.
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approach can be used for an approximate evaluation of
reflected pulse parameters.

For large initial peak intensities the reflected pulse sp
into two pulses as observed by Slusheret al. @9#. Typical
profiles of incident and reflected pulses, found from nume
cal calculations of the NLCMEs, fors51700 m-1 and dif-
ferent intensities are presented in Fig. 5. For such a detu
the transmitted pulses are very weak and they are not sh
in the figure. The evolution of the field (I inc
520 GW/cm2) inside the chirped grating during the refle
tion is shown in Fig. 1. In this case the pulse splitting occ
well before the turning point. Note also that the field inte
sity near the turning point is large, so that a correct desc
tion would probably require additional effects such
higher-order nonlinearities, dispersion, and dissipation.

It follows from Figs. 1 and 5 that the reflected pulse sp
when I inc520 GW/cm2. We found from numerical simula
tions that the splitting threshold is roughly 16.5 GW/cm2 for
the detunings51700 m-1. We have found numerically the
threshold for the appearance of two pulses in the reflect
As the threshold we used the minimum value of the init
peak intensity, when the peak intensity of the smaller
flected pulse is at least 0.2 of that of the larger one, and
smallest value between the two pulses is less than 0.8 o
peak intensity of the smaller pulse. This choice is not cruc
and thresholds for other definitions are close to the data
sented here.

The dependence of the splitting threshold on the detun
obtained from simulations of the NLCMEs, is shown in F

FIG. 5. Time dependences of incident and reflected pulses
detunings51700 m-1, and the chirpDl50.1 nm. The straight
line corresponds toI inc53 GW/cm2, the dashed line toI inc

510 GW/cm2, and the dotted line toI inc520 GW/cm2.

FIG. 6. The splitting threshold versus the detuning. Lines,
noted asI N , correspond to thresholds ofN-soliton creation.
he
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6. We also plot the thresholds for two-, three-, and fo
soliton creations, calculated from Eq.~12! and initial param-
etersv(0) andw(0). One can seethat the splitting of the
reflected pulse is observed if the incident pulse is a mu
soliton bound state. Moreover, splitting is observed when
initial peak intensity is close to the threshold for the thre
soliton creation, which agrees with the discussion in S
II C. The splitting threshold for larger detunings increas
because only a fraction of the incident pulse is reflected n
the turning point, while the remainder is transmitted. The
fore one needs higher initial intensities to see the splitting
larger detunings. The peak intensity for the three-soliton c
ation I 359I f /4 can be used as an estimation for the thresh
of the reflected pulse splitting.

IV. CONCLUSION

We have studied the dynamics of nonlinear pulses in
chirped fiber grating. The analysis is based on the NLS li
for the propagation of coupled grating modes. By using s
ton perturbation theory, we found the evolution of the p
rameters of single soliton pulses. The inhomogene
induced perturbations lead to changes of the amplitude
width, as well as the phase of the soliton. Namely, a chirp
grating with vz,0 (vz.0) or in the linearly chirped case
with a,0 (a.0) corresponds to the normalized NLS sy
tem with a dissipation~an amplification!. The variation of
the soliton phase results in changes of the soliton veloc
The influence of the perturbations on multisoliton bou

he

-

FIG. 7. The variation of imaginary partsh1 andh2 for e150.
~a! e050.01, h1 ~dotted line! and h2 ~solid line!, e050.05, h1

~long-dashed line! and h2 ~short-dashed line!; ~b! e0520.01 and
e0520.05.
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states or breathers is also studied. On the basis of this an
sis we show that the splitting of the reflected pulse is due
the breaking of the bound multisoliton state. For a be
understanding of the reflection process it is necessary
study both the dynamics of pulses for small local detunin
and the penetration of pulses into the band gap. Though
consider mainly chirped gratings, the theory can be used
the analysis of the pulse dynamics in any nonuniform g
ings with slowly varying parameters.
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FIG. 8. The variation of eigenvaluesl1 and l2 for e050. ~a!
Real parts,e150.01, j1 ~dotted line!, and j2 ~solid line!; e1

50.02,j1 ~long-dashed line!, andj2 ~short-dashed line!. ~b! Imagi-
nary partsh1 , h2.
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APPENDIX: DYNAMICS OF A BREATHER.
INVERSE SCATTERING APPROACH

Here we study numerically the parameter variation of
dividual solitons initially bound in a breather using the i
verse scattering transform~IST! method. It is known that the
initial value problem for the unperturbed NLS equation@Eq.
~15! with e05e150] can be solved by this method@19#.
This means that the asymptotic behavior of the initial pu
is found from the solution of the associated linear scatter
problem. The numberN of discrete eigenvaluesz j5j j
1 ih j , wherej 51, . . . ,N, situated in upper half of the com
plex plane (h j.0), corresponds to the number of emergi
solitons. If the solitons are well separated, each of them
the form close to the one-soliton solution

c~y,t!52h sech@2h~t12jy2t in!#

3exp@22i ~jt2~j22h2!y1f in!#, ~A1!

where t in and f in are constants. Therefore, 2h j and 2j j
characterize the amplitude~or the width! and the velocity~or
the frequency! of the soliton, respectively. However, if th
real parts of allz j have the same value, then the solito
form a multi-soliton bound state or a breather. Since in
vidual solitons cannot be distinguished in such a state,
real and imaginary parts ofz j lose their simple meaning, s
that the breather is described by the whole set of parame
z j . Note that the binding energy is zero@19# and even small
perturbations can thus break the state.

We solved Eq.~15! numerically forconstante0 and e1.
At each positiony with step Dy50.5 we find the discrete
spectrum of the associated linear scattering problem. We
check the total number of eigenvalues~solitons!. The result
for the initial condition ~17! with A52 and w50, which
corresponds to the discrete spectrum (N52) z153i /2 and
z25 i /2, is presented in Figs. 7 and 8.

The evolution ofh j , j 51,2, under the action of thee0
term only in Eq.~15! is shown in Fig. 7. The real partsj j
remain zero, thereforee0 does not break the bound stat
Note thate0.0 corresponds to dissipation, whilee0,0 cor-
responds to gain. The influence of thee1 term only is pre-
sented in Fig. 8. The transformatione1→2e1 results in ex-
changing (j j ,h j )→(2j j ,h j ). As seen from Fig. 8~a! the
perturbatione1 affects the real partj j , breaking the bound
state. However, no new solitons are created by the pertu
tions. The dynamics of individual solitons agrees quali
tively with the dynamics of a single soliton.
-
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