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Propagation of nonlinear pulses in chirped fiber gratings
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The propagation of nonlinear optical pulses in chirped fiber gratings is studied. The dynamics is analyzed on
the basis of the inhomogeneous nonlinear Sdimger equation. By using perturbation theory we demonstrate
that the inhomogeneity affects the amplitude and the width, as well as the phase and the velocity of the soliton.
The dynamics of a multisoliton puls@reather in chirped gratings is also discussed. It is shown that the
velocity variation of individual solitons leads to the breaking of a bound multisoliton state. This process
manifests itself as the pulse splitting that is experimentally observed by other authors. Numerical simulations
of the pulse dynamics agree well with analytical results for wide range of parameters.

PACS numbds): 42.79.Dj, 42.81.Dp

[. INTRODUCTION amplitude and width, as well as its velocity and frequency
(Sec. 11 B. As a consequence of this, we find that higher-
There is an increasing theoretical and experimental interorder solitons propagating in nonuniform gratings s{Siec.
est in pulse propagation in Bragg gratings. The large 1l C). In Sec. Il this insight is used to explain the results of
group velocity dispersion, the selective frequency responsélusheret al. [9]: an incident pulse that is sufficiently intense
and the nonlinear properties of gratings allow applicationssplits into its soliton components. For most two-soliton
such as in-fiber filters, dispersion compensation deVi2ggs pulses, the peak intensities of the emerging solitons differ by
pulse compressoi§], and sensorf4]. an order of magnitude, so that, in effect, a single pulse is
In fiber Bragg gratings, in which the refractive index in observed experimentally. Only three-soliton pulses, and two
the fiber core variegalmos) periodically as a function of soliton pulses close to the three-soliton threshold, lead to
position, the forward and backward propagating waves aré&oliton components with roughly similar intensity ratios,
strongly coupled. This leads to the opening of a photonidvhich can thus be observed separately. This is confirmed by
band gap in the optical spectrum, and low group velocity andiumerical simulations, which show that the threshold for
strong dispersion for frequencies just outside this gap. Théplitting approximately corresponds to that for three-soliton
high-intensity dynamics of the forward and backward propaformation. The dynamics of a two-soliton pulse of the per-
gating waves is described by the nonlinear coupled modéurbed NLS equation is analyzed numerically in the Appen-
equationsNLCMESs). However, a convenient and adequatedix by using the inverse scattering transfof8T) method.
description can also be given using the nonlinear Schro
dinger(NLS) equation5]. Both these equations have soliton Il. THEORY
solutions that can propagate at velocities well below the
speed of light in the uniform medium. Indeed, the existence
of such “grating solitons” was verified experimentally by o o
Eggletonet al.[5,6], Taverneret al.[7], and Millaret al.[8]. n(z)=n+ 5n(z)+An(z)co{— + 0(2)) , D
Nonuniform gratings, which are characterized by varia- d

tions of the local Bragg frequencichirped gratings or —. L . o
variations in the grating strength, have additional degrees of/N€ren is the average refractive indean is the variation in

freedom for the control of pulse propagation. The present€ background refractive indein is the modulation depth
work is motivated by the experiments of Sluskeral. [9],  ©Of the grating,d is the nominal grating period, anlis its
who studied high-intensity propagation in linearly chirpedphase. Assumingn,An small (<n) and all slowly varying,
gratings. They found that incident pulses with a peak intenthe envelope functions.. of the electric field are known to
sity exceeding roughly 10 GW/cmthat are reflected by obey the NLCME{10]
such a grating split into a pair of pulses under very general
conditions. An example of such a dynamics is given in Intensity (GW /cm?2)
Fig. 1.

We analyze pulse propagation in nonuniform gratings, in-
cluding the pulse splitting, using the reduction of the

The refractive index of a nonuniform grating is written as

NLCMEs to the NLS equatiofSec. Il A) [10,11. Applying )

perturbation theory we first study the dynamics of single 28 4

solitons, and show that the inhomogeneity affects the soliton 500 = z (cm)
1000 1500 0 ¢

Time (ps)

*Also at the Physical-Technical Institute of the Uzbek Academy FIG. 1. The evolution of the total intensity inside the chirped
of Sciences, 2-B, Mavlyanova Str., Tashkent, 700084, Uzbekistangrating,L=0.06 m,o=1700 ni'%, 1;,,.=20 GW/cn?.
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where the subscript corresponds to forward)(and back-
ward (—) propagating wavesV is the group velocity in the
grating’s absencd,; =4mnn,/(\gZ), n, is the nonlinear re-
fractive index,\g=2nd is the Bragg wavelength, ard is
the vacuum impedance. The grating strengtlz) and the
variation of the local Bragg frequency(z) are given by

T 27 1deo
K(Z):)\—BAH(Z), 6(z)=)\—86n(z)— 3

2dz’
The dispersion relatiof€.. ~exqi(Qz—Qt)]) of uniform
linear gratings has two branches, and is given by

Q.=V(-86+Jk*+Q?. (4)
The dimensionless group velocityis
1dQ. Q
v=— == . (5)
VdQ T Q42

In nonuniform gratings that are sufficiently slowly varying,

Q, andv can be considered as local parameters.

A. Nonlinear Schrodinger equation
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FIG. 2. The band diagram of apodized chirped<(0) gratings
as a function of the detuning=(w— wg)/V and the distance.
Numbers near the left axis correspond to the set of parameters, used
in numerical simulations. In the work of Slushet al. [9] «
=1260 m!, L=6 cm.
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whereuv(2)V is the local group velocityy=1/y/1—v?, and
the prime means the space derivatil/elz. Equation(8) de-

Though the NLCMEs(2) govern wave propagation in Scribes pulse propagation for frequencmssidethe band
gratings, perturbation theory is not well developed for thesegap at any grating position; for incoming pulses-0, for
equations. We therefore use the reduction of the NLCMEs taeflected pulses <0. The equation is valid for any type of
the NLS equation, which is very well studied. Consider thenonuniformity. The propagation of pulses in chirped gratings
eigenfunctions(Bloch functions corresponding to the dis- (x=const) or in gratings with variable strengtlh= const)

persion relation(4),

e B Bl
B AR e A AR

wheref, (f) refers to the uppeflower) branch of the dis-
persion relation. Note that Eq&} and(5) only specify|v|,
and not its sign. Therefore, for forward propagatiimcom-

ing) pulses we take >0, whereas for backward propagating

(reflected pulses we take <0. We now write a multiscale
expansion of the envelopes [l

&)-

va(z; t) () +v?bi(z; 1) fi(z)

+ ]/3b2(Zj ,tJ)f|(Z])eXF{|( fZQ(Z)dZ_Q+t>
0

(@)

wherezj=vlz, tj=»It, j=1,2,..., andv<1 is a small
parameter. Slow variations of the Bloch functions via the

can be obtained as particular cases. The relations between
8, and x and their variations argl0]

K2
v=\/1-——,
(Q, IV+6)?

dv 1 dé

(€)

Though our formalism is completely general, let us con-
sider here the type of gratings of direct interest. Shown in
Fig. 2 is the band diagram of an apodized, chirped grating
with the total chirpd.. The frequencies at which the field
envelopes are evanescent, and where the grating thus reflects,
are indicated by the dashed lines. The apodized regions at the
front and the back reduce out-of-band reflections. The grat-
ing’s central section is chirped but has a uniform strength;
this section is the main focus of this work.

Now we find the relation between the incident pulse and
the initial condition at the start of the central secti(®,t).
These differ because of the tagé]. We assume the spec-

have to be included in this expression to account for thd@rum of the incident pulse to be outside the band gap, so that

grating nonuniformity{10,11]. Substituting Eq(7) into Eq.

essentially all incoming energy transforms to the forward

(2) and applying multiple scale analysis, one obtains in ordepropagating pulse in the grating and reflections are negli-
v the perturbed NLS equation for the complex amplitude ofgible. Let the envelope of the incident pulsezatO have the

the Bloch functiona(z,t) [10,11]

form



2884

Einc(t) =& seclit/ mg) exp( —ioVi), (10

wherer, is the pulse durationy is the carrier frequencyyg
is the Bragg frequency az=0, and o=(w— wg)/V

=, /V is the detuning. We suppose that in the tapers the c 1

pulse transform&diabatically, affecting only its amplitude.
Then from the linearized E(8), and using leading terms,
we find[11]

o

Vu(0)

a(z=0t)= sechit/ y). (11

The same relation can be obtained from the conservation law

dJ/dz=0, whereJ=[* _(|£,|?—|£_|?) dt. Thus, the total

field intensity inside the grating is larger than that outside by,
a factor 14 (0). Though numerical simulations show that
there is also a variation of the pulse phase during propag

tion through the taper, relatiofil) is a good approximation
for a large set of system parameters.

We now analyze the pulse dynamics using ER). First
note that the peak intensity of the incident pul§6), corre-
sponding to the fundamental soliton inuaiform grating is

[5]

3107 g

V2 mkn,w?u y3(3—v?)

f ’ (12)

wherew is the full width at half maximun{fFWHM), related
to 7o from Eq.(11) asw= 27, cosh 1(/2). The threshold
for the creation ofN solitons from the pulse with initial
shape(10) is related tol; by [12] 1y=(N—1/2)%I;. The
intensity | depends on the detuning throughso we use it
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We should mention that equations similar to Ef§5) have
been studied in the context of soliton propagation in optical
fibers [13], e.g., in fibers with losses and in dispersion-
decreasing fibers.

B. Dynamics of a single soliton

Here we consider the effect of the perturbation tergs
ande,, due to the grating’s inhomogeneity, on the dynamics
of the single soliton

Py, 7)=A(y) seclix) expli @), (17)

where

x=[1—7]l1y, @=d+CiTpX+ Czrgxz.

Herer., 7,, ¢, Cq, andc, are functions ofy. The values
-Q,+cqy/7y and CZITS are the linear phase and the chirp
coefficients of the pulse envelope, respectively. Below we
deal only with slow inhomogeneities, so that the perturba-
tions in Eq.(15) are small. Therefore, we assume that the
inhomogeneity only results in a variation of soliton param-
eters without changing the shape. To obtain the equations for
the parameter evolution we use the perturbation method of
Maimistov [14], according to which

for estimates of thresholds for nonuniform gratings as well.

Below we drop the last term on the right-hand side of Eq. d 5 vy Ay 5
(8) because the coefficient in brackets is small for typical @(TpA )= 2| @Gyt 5+ TpAT (18
values of the parameters. Moreover, the last term can be s
eliminated by a phase transformation of the fiald,t). d 2
Since the grating nonuniformity leads to the position de- ﬁzcl_ 77_610272, (19)
pendence of the dispersion and nonlinearity, it is convenient dy 3 P
to introduce new dimensionless variables
dc 2
Lz 1 1wz a o= (1P, (20
y_ OZ_S, T_T_O t_VJ'oj ’ lp_a_sy (13) y 37-p
where dc, 1 , A?
d_yzz( 24 27 52 (21
z(2)= TSVZKysvS, T p 7p
3 2 (14) dr
ay(2)=\2/[vV 7o\ T (3= v?)]. d_;:2°279' 22)

Herez, is the scale of the propagation distance, which equals

the dispersion length, and is the amplitude scale of the According to Eqs(18)—(22), the inhomogeneity affects the
field ¢ [ag(0) is the amplitude of théundamentalsoliton,  soliton centerr, and the frequency shift;. We use this in
cf. Eq. (12)]. With increasingv, a, decreases, whilg, in-  discussing the splitting of a bound state of solitsee Sec.
creases. Then E@8) can be written in its final form II C). By the definition of¢(y, ), the initial linear phase
coefficient c;(0)=0 [see Egs.(11) and (13)]. Hence for
small distancey<1/e;, the coefficientc,(y)~O(e;), and
the first term on the right-hand side of E(L8) can be
dropped agO(e3). Then Eq.(18) can be immediately inte-
grated, giving

1
Hhy+ 5 et | 91P0= i €= ey, (15)

where
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A2 alug initial pulse is close to the fundamental solifpso thatZ

P ==, (23) =2 in units of the dispersion length. We note that the treat-
TpoAp 85 v ment given here does not include radiation losses, which
cause the oscillations aroung,, to be damped. As an aside,
we also mention that if the inhomogeneity is periodic with

where subscript “0” denotes the initial value of correspond-

. - _ 2 .

ing parameter, i.e., gt=0. The productr,A” is a measure e period close t&,, then resonance and chaotic phenom-
of the total pulse power. Therefore H@3) represents varia-  gna"can oceur, leading to pulse broadening and even pulse
tions of the pulse power due to the inhomogeneity. In d'menbreaking[ﬂ].

sional units Eq/(23) has the form The previous arguments are sufficient for a qualitative

2 description of the pulse behavior during the propagation in-

’7'050 . . . .
tpaﬁs , (24) side the inhomogeneous grating. Moreover, the solution of
v Eq. (25 can easily be found numerically. However, here we

consider limiting cases to obtain some explicit relations.
Though the relations above are valid both ®+ §(z) and
[see Eq.(7)]. Note that an inhomogeneity with,<0 (o, k= k(z), below we concentrate on chirped gratings, keeping

. . =const. We introduce, in addition &, two characteristic
>0) in the actual system has the same effect as a variab )
T Y . . ; imensionless lengths—the length of the syst&mand the
dissipation (amplification in the dimensionless system.

Since bothzs andag [Eq. (14)] also change due to the inho- chirp lengthZ
mogeneity, variations of the actual envelopgz,t) cannot

wheret, is the local pulse width, andy, is the maximum of
the absolute value of the Bloch function enveldp€z,t)|

be easily predicted. There is of course no energy loss or gain Z(L)= ;JL()/U)*dz,
due to the inhomogeneity, and the quantltysee Sec. Il A szré 0
does not vary with position. (29
Combining Eqgs(21) and(22) and taking into account Eq. . v(3—v?) dy
(23), we obtain the equation for the pulse duration c(y) 372(1402) do :
dZTp: i i_ zagovo i (25) The length scal&Z.. is defined as the scale of the varying
dy?> 2 7,3; 0 agv T,Z) ' coefficient, which is the inverse local asymptotic width
Urmin in EQ. (25).
with the following initial conditions: The first limiting case is that of short gratings <Z,,,
where the variations of the pulse width is small. Then Eq.
m(0)=1, d7,(0)/dy=2c5(0). (26)  (25) can be approximated as
The remaining parameters of the soliton are determined from d2r 4 a’u
75(y). Equation(25) is a Kepler equation with varying co- P 21— SLO , (30)
efficient. A similar equation was studied by Andergas] in dy? 2 asv

the context of optical soliton propagation in media witin- S ) )
stant dissipation, while in our case the perturbation coeffi-SO that the pulse width is completely determined by the in-
cients vary ony. We give here only the main conclusions homogeneity. For short gratings, if the amplitude of the in-
from the analysis of Eq(25), which is similar to that of cident pulse is greateftess than the amplitude of the fun-
Anderson[15]. First of all, depending on the sign of the damental soliton, Ag>1 (Ao<1), then 7, decreases

HamiltonianH of Eq. (25), which is defined as (increasegsfor any weak inhomogeneity.
The next limiting case is that of adiabatic dynamigs,
1(dr, 2 zaio vy 1 >Z,, when the Kepler potential changes slowly compared
H=3lav] | 224 2 >— |+ (27 with the oscillation period. By applying the WKB method
y T Tp s U w7y (see also the work by Anders¢mh5]) we find

the pulse width either oscillatesHO0) about 7,
=a? v/[AZa%u,], the minimum of the effective Kepler po- o= Tmin
tential, or asymptotically growsH>0). One finds that both

H and 7, Increase whery decfeases and vice versa. It \where constant® and ¥, are determined from the set
means that due to inhomogeneity the regime of the width

2 (v _,
1+pBco —f TmindY+ Ug
mJo

} : (31)

dynamics changes with the propagation. The period of the A2— 1= cosdy,
width oscillations, corresponding to the period of motion on (32)
the elliptic orbit of Kepler potentia[16], depends on the d7in(0) 2
e L. . A2 min __“ a2 .
position inside the grating as 2Cy— A dy WAoﬁ sindy.

7 (y):f agvo A _ (28) The second term in Eq31) is negligible, if the incident
P ™ agvz V2[H|? pulse is close to a fundamental soliton, i&s=1.
Let us now apply these resultsltoearly chirped gratings
For c,(0)=0, the initial period ofsmall oscillationsZs is 5= az, wherea is a constant. The characteristic lengths then
calculated aZ,(0) with the additional conditiod,=1 (the  have the following forms:




2886
1 3-02
¢ V224 3vyA(1+02)’
(33
1 1 1
ZLI—Z(—— )
VZTO(I vo vu(L)
The adiabatic dynamics is described [lsge Eq.(31)]
Tp:Tmin{1+ﬁCOS{M(f(U)_f(UO))'I'ﬁO]}a (34

where

[agoAév oV 7okl ]?

87w

7

_ 20(9-Tv?)
f(v)= 107 +9InT—

Therefore the soliton width, as well as other soliton param
eters, oscillates about the value corresponding to th
asymptotic soliton. This value and the frequency of oscilla-

tions changes slowly with the position.
Let us discuss the validity of Eq6l8)—(22) and(25). As

any perturbation theory the approach is correct when the
variation of the parameters and/or their derivatives is small
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of A. Though it is possible that some perturbations create
new solitons, the amplitudes of these solitons vanish, so that
they are difficult to observe.

We saw from the analysis of the single soliton dynamics
in Sec. Il B, that the inhomogeneity leads to variations of the
pulse position. In other words, the velocities of solitons in
the bound state are not equal, resulting in pulse splitting. The
dynamics of anN breather under perturbations is different
from the dynamics ofN separate solitons due to the strong
mutual interaction. However, as shown in the Appendix, the
dynamics of individual solitons in the two-soliton bound
state is qualitatively the same as the dynamics of the single
soliton. The perturbations affect the larger soliton more
strongly and after the splitting the solitons move in opposite
directions with respect to their “center of mass.” The im-
portant point is that the small perturbations do not create new
solitons, even though their effects are similar to that of gain
(60< O)

Recall that we assumed that the effect of the taper can be
captured by Eq(11). Numerical calculations in fact show
that just after the taper, the pulses are slightly chirped. This
nitial chirp can result in increased thresholds for multisoli-
on creation18].

IIl. COMPARISON WITH NUMERICAL SIMULATIONS
AND EXPERIMENTS

To verify the theory, we consider the linearly chirped

enough. Therefore the results apply to slow inhomogeneitie@rt—mng (6= az,a<0) of lengthL=6 cm and with band-
and sufficiently short gratings. Estimates show that for thegap width 0.3 nm near the Bragg wavelengthg

chirp slopea~10° m~2, the range of admitted velocities

=1053.2 nm. The total grating chip . is chosen equal to

is 0.3sv=0.9, which corresponds to detunings betweeng g .05, and 0.1 nm, where the total variation of the
1.05« and 2.3x. For smaller velocities the local wave num- Bragg frequency 8,V is related to A\, as SV

ber is also small, so that the assumption of a slowly varying_

envelopd see Eq(7)] breaks down. For velocitias close to

unity the dispersion lengtlz;, becomes large, so that this

analysis is also not valid. The reduction of the systa®)—
(22) to the second-order ordinary differential equati@b) is

allowed for short system&, <1/e,. For larger systems one
should solve the whole sé€18)—(22), though the pulse be-

havior is qualitatively similar.

C. Dynamics of multisoliton pulses

|277nAN/NE|V. The pulse width(FWHM) is 80 ps.
These parameters are close to those of Slushad. [9].

Estimating the perturbations in E@L5), we find that in the
cases considerefk,|<|eo| and

3 1+0?
2 222
€= zaTOV)/vs_vz.

Fora 6 cm grating, a total chif@A,=0.1 nm is not small,
€0~0(1). However, as shown below, even for this case the

We are particularly interested in the application to multi- theory is qualitatively correct.

soliton pulses as observed in experiments of Slustex.

Chirped gratings have a selective response depending on

[9]. It is known that for the unperturbed NLS equation thethe detuning. Namely, foer<<O, waves with the initial de-

initial condition (17) with ¢=0 and arbitrary amplitudé\
produces the bound state Nfsolitons (pure imaginary ei-
genvalues £j) with corresponding amplitude$12] g,
=27;=2(A—j)+1, wherej=1,... N andN is the largest
positive integer, satisfying 2(—N)+1>0. The threshold

tuning o [see EQq.(10)], satisfying k<o<k+ 5., are re-
flected, while waves with detuning> x+ &, propagate al-
most without reflection(see also Fig. 2 In fact, the
dynamics of pulses is more complicated, especially for de-
tunings close toc+ 6., where part of the incident energy is

for theN soliton creation iAy=N—1/2. Suppose that due to reflected and the rest is transmitted.

some perturbations the bound state splits into several, closely First we consider the propagation of one-soliton pulses
spaced pulses. Since the intensity is proportional to th@and present results for the transmission, when the initial de-
square of the amplitude, the ratio of peak intensities of theuning is outside the gap;> «+ &, (see Fig. 2 According
smallest and the largest solitons is(2A—2N+1)%(2A  to Sec. Il B, in the dimensionless system a pulse evolves due
—1)2. For example, forA=2, N=2, the peak intensity of to the effective dissipatione,>0) and the perturbatios;

the smaller soliton is only roughly 10% of that of the larger that affects the phase. The dependence of the peak intensity
soliton. Therefore, two-soliton solutions are observed as and FWHM of the transmitted pulse on the detuning is
single pulse up tAA=2, while the three-soliton solution is shown in Fig. 3. Dots correspond to numerical calculations
seen as a two-pulse state for almost all corresponding valueg NLCMESs (2), while lines are found using Eq&25), (26),
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FIG. 3. Dependences of transmitted pulse parameters on the FIG. 4. Dependences of reflected pulse parameters on the detun-
detuning. Dots show the results of numerical calculations ofing. Dots show the results of numerical calculations of NLCMEs
NLCMEs (2), lines correspond to the theory, Eq85), (26), and  (2), lines correspond to the approximate treatmémtFWHM, (b)

(23). (@) FWHM, (b) peak intensity. Squares correspondAa . peak intensity. For all plotd\.=0.1 nm. Squares correspond to
=0.02 nm, circles toAN.=0.05 nm, and diamonds tad\. L=0.06 cm, circles toL=0.12 cm, and diamonds toL
=0.1 nm. =0.30 cm.

and (23). The peak intensity of the incident pulse is takenclose to the turning pointz;~0.9,, the pulse parameters
linc=3 GWicnt, corresponding to the weakly nonlinear re- before and after the reflection are the same.

gime, and below the threshold for the two-soliton creation The result for parameters of the reflected pulsez=ad

for all detunings considered. Fax\.=0.02 nm and, for for l;,;=3 GWr/cn? is presented in Fig. 4. In order to vary
example, the detuningr=1600 m!, the dimensionless the chirp slope, we keep the total chirp the same for all cases
lengths areZ,(0)=23.1, Z, =1.99, Z,(0)=2.67, and the (A\.=0.1 nm) and change the length of the systerfsee

coefficients of the perturbations arg=0.187 ande;= also Fig. 2. Using the valuet =30 cm ando=1700 m,
—0.031. The condition of the short length is satisfigd we find Z,(0)=11.6, Z,(0)=2.01, €,=0.249, ande;=
<1/e4, so that the analysis based on EBS) is valid. For  —0.028. The estimate of the turning point position in dimen-

large values of the chirp slope, there is appreciable deviatiogionless units, which plays the role &f , gives an infinity
from the theory in the regiow~ x+ d., wherev is small  because the theory does not work foclose to zero. How-
and the perturbations in E@L5) are large. However, in all ever, the dimensionless length corresponding;tes ~ 10.
cases there is good qualitative agreement between the analjherefore, we use the Kepler equati(#b) for both direc-
sis and numerical data. tions of the pulse propagation in order to compare with nu-
Though the theory in Sec. Il B is developed for pulses inmerical results. We choose different valugkz, for different
transmission, it can also be used for an estimation of paramengths; however, in all cases/z;~0.9 and this ratio is the
eters of the reflected pulse a&=0. The dynamics of the only fitting parameter in the analysis. We consider the inter-
pulse can be divided into three stagégthe forward propa- mediate detunings in the regi¢®r, «+ &.] for the following
gation in the grating withe<<0, (ii) the reflection, andiii)  reasons. For detunings~ « it is possible to see two-peaked
the backward propagation in the grating witt» 0. By using  reflected pulses, even for very small initial intensities, i.e., in
the theory, one can find the pulse parameters for forwarthe linear regime. For detuningss « + &, there is a splitting
propagation up to some poirt<z,, wherez, is the turning  of the incident pulse into reflected and transmitted pulses
point. The analysis is not valid for the second reflection stag@ear the turning point. Therefore only for the intermediate
because both the local detuning is close to the edge of theegion of detunings the forward and backward propagating
gap and the penetration of the pulse into the gap. However, {julses can be considered as a single soliton. The deviation of
one knows the relation between pulse parametes ptst  theoretical lines from results of the numerical calculation in
before and after the reflection, then one can apply the theorig. 4 implies that the change of pulse parameters near the
for the final stage of the dynamics as well. We assume thaturning point cannot be completely neglected. However, our
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FIG. 5. Time dependences of incident and reflected pulses, the y (arb. units)
detuningo=1700 mt, and the chirpAA=0.1 nm. The straight 8 T
line corresponds tal;,,=3 GWi/cnt, the dashed line tdl . i /(b):
=10 GWricnt, and the dotted line t,,,=20 GW/cnf. i / ]
6 — —
approach can be used for an approximate evaluation of the i /// ]
reflected pulse parameters. & | e ]
For large initial peak intensities the reflected pulse splits 4 e 7
into two pulses as observed by Slusheral. [9]. Typical & T el ad
profiles of incident and reflected pulses, found from numeri- r 7 -
cal calculations of the NLCMEs, far=1700 m® and dif- L T ]
ferent intensities are presented in Fig. 5. For such a detuning e
the transmitted pulses are very weak and they are not shown o) A I B B
in the figure. The evolution of the field I 0 5 10 15 20

=20 GWr/cnf) inside the chirped grating during the reflec- y (arb. units)

tion is shown in Fig. 1. In this case the pulse splitting occurs

well before the turning point. Note also that the field inten-  FIG. 7. The variation of imaginary partg, and 7, for e;=0.
sity near the turning point is large, so that a correct descrip® €=0.01, 7, (dotted ling and 7, (solid line), €,=0.05, 7,
tion would probably require additional effects such as(long-dashed lineand 7, (short-dashed line (b) €,=—0.01 and
higher-order nonlinearities, dispersion, and dissipation. €o=—0.05.

It follows from Figs. 1 and 5 that the reflected pulse splits

when l;,.=20 GW/cn?. We found from numerical simula- 6- We also plot the thresholds for two-, three-, and four-
tions that the splitting threshold is roughly 16.5 GW/dior soliton creations, calculated from E@.2) and initial param-

the detuninge=1700 m. We have found numerically the €t€rsv(0) andw(0). One can seénat the splitting of the
threshold for the appearance of two pulses in the reflectiorf€flécted pulse is observed if the incident pulse is a multi-
As the threshold we used the minimum value of the initialSO/iton bound state. Moreover, splitting is observed when the
peak intensity, when the peak intensity of the smaller re_init!al peak irlwtensity.is close to the threshpld for. the.three-
flected pulse is at least 0.2 of that of the larger one, and thg°liton creation, which agrees with the discussion in Sec.
smallest value between the two pulses is less than 0.8 of tHeC- The splitting threshold for larger detunings increases
peak intensity of the smaller pulse. This choice is not Cruciahl:)ecause only a fraction of the incident pulse is reflected near

and thresholds for other definitions are close to the data prél® turning point, while the remainder is transmitted. There-
sented here. fore one needs higher initial intensities to see the splitting for

The dependence of the splitting threshold on the detunindf"rger detunings. The peak intensity for the three-soliton cre-

obtained from simulations of the NLCMES, is shown in Fig. ationl;=9I¢/4 can be use_d_as an estimation for the threshold
of the reflected pulse splitting.

50 — .
(] L 1
§ wf ] IV. CONCLUSION
= r ] We have studied the dynamics of nonlinear pulses in the
© 30 ; 1 chirped fiber grating. The analysis is based on the NLS limit
Z 2 [ ] for the propagation of coupled grating modes. By using soli-
g 5 ] ton perturbation theory, we found the evolution of the pa-
E ol rameters of single soliton pulses. The inhomogeneity-
= r induced perturbations lead to changes of the amplitude and
& ot ! ! width, as well as the phase of the soliton. Namely, a chirped

1600

G

" 1 L
1800

(1/m)

grating withv,<0 (v,>0) or in the linearly chirped case
with <0 («>0) corresponds to the normalized NLS sys-
tem with a dissipatio(an amplification. The variation of

FIG. 6. The splitting threshold versus the detuning. Lines, dethe soliton phase results in changes of the soliton velocity.

noted ad y, correspond to thresholds dFsoliton creation.

The influence of the perturbations on multisoliton bound
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1.5 e — T APPENDIX: DYNAMICS OF A BREATHER.
INVERSE SCATTERING APPROACH

~
1

Here we study numerically the parameter variation of in-
dividual solitons initially bound in a breather using the in-

& verse scattering transfor(fST) method. It is known that the
o 05 initial value problem for the unperturbed NLS equat|&.
’ (15) with ey=¢€,=0] can be solved by this methdd9].
o e This means that the asymptotic behavior of the initial pulse

is found from the solution of the associated linear scattering
problem. The numbemN of discrete eigenvalueg;=¢;
05—l +in;, wherej=1,... N, situated in upper half of the com-
plex plane 7;>0), corresponds to the number of emerging
solitons. If the solitons are well separated, each of them has
(b) Y the form close to the one-soliton solution

Wy, 7)=2nsech2n(7+2&y—7i,)]
xexf —2i(é7— (&= nd)y+ )], (Al

where 7;, and ¢;, are constants. Therefore,72 and Z%;
characterize the amplituder the width and the velocityor

the frequency of the soliton, respectively. However, if the
_____________________ real parts of all; have the same value, then the solitons

] form a multi-soliton bound state or a breather. Since indi-
ol v v b e vidual solitons cannot be distinguished in such a state, the
) real and imaginary parts df; lose their simple meaning, so

y (arb. units) that the breather is described by the whole set of parameters

FIG. 8. The variation of eigenvalues, and\ , for €,=0. () ¢; - Note that the binding energy is ze9] and even small

Real parts,e;=0.01, &; (dotted ling, and &, (solid line); e; perturbations can thus break the state.

=0.02, £, (long-dashed ling andé, (short-dashed line (b) Imagi- We solved Eq(15) numerically forconstantey and €.
nary partsy;, 7. At each positiony with stepAy=0.5 we find the discrete

spectrum of the associated linear scattering problem. We also

states or breathers is also studied. On the basis of this analjheCk the total number of eigenvaluemlitons. The result

sis we show that the splitting of the reflected pulse is due tdor the initial condition(17) with A=2 and ¢=0, which

the breaking of the bound multisoliton state. For a bettecorresponds to the discrete spectruN=2) {;=3i/2 and

understanding of the reflection process it is necessary té2=1/2, is presented in Figs. 7 and 8. .

study both the dynamics of pulses for small local detunings The evolution of#;, j=1,2, under the action of the,

and the penetration of pulses into the band gap. Though wi&rm only in Eq.(15) is shown in Fig. 7. The real partj

consider mainly chirped gratings, the theory can be used foiemain zero, therefore, does not break the bound state.

the analysis of the pulse dynamics in any nonuniform gratNote thate,>0 corresponds to dissipation, whiigg<<O cor-

ings with slowly varying parameters. responds to gain. The influence of tke term only is pre-

sented in Fig. 8. The transformatien— — €, results in ex-

changing &;,7;)—(—¢&;,7;). As seen from Fig. & the

perturbatione; affects the real par§;, breaking the bound
We are grateful to R. E. Slusher and B. J. Eggleton forstate. However, no new solitons are created by the perturba-

discussions. This work is supported by the Australian Retions. The dynamics of individual solitons agrees qualita-
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